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Summary. Time-dependent perturbation theory has been applied to calculate
the doubly excited triplet states Nsus: 3S¢, Npnp: 3D° and Ndnd: 3G*® (N = 2, 3,4,
n=N+1,..,5 for He, Li*, Be?* and B**. A time-dependent harmonic per-
turbation causes simultaneous excitation of both the electrons with a change of
spin state. The doubly excited energy levels have been identified as the poles of an
appropriately constructed linearized variational functional with respect to the
driving frequency. In addition to the transition energies, effective quantum num-
bers of these doubly excited states have been calculated and analytic representa-
tions of their wave functions are obtained. These are utilized to estimate the
Coulomb repulsion term for these states which checks the consistency of the wave
functions. These wave functions may also be used for calculating other physical
properties of the systems.
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1 Introduction

Study of the doubly excited states of atoms has growing interest during the last two
decades chiefly because of their importance in interpreting astrophysical data [ 1, 2]
and their level description in terms of a new set of quantum numbers [3-7] which
represents a complete departure from conventional single particle picture [§].
Although it is observed first in helium by Madden and Codling [9] in photo-
absorption experiments, now it is experimentally observed for highly charged ions
also [10].

Theoretical calculations so far done involve two distinct approaches. The first
one involves collisional methods as pioneered by Burke and Taylor [ 111, O’Malley
and Geltman [12], Macek [13] and more recently by Callaway [14], Bhatia and
Temkin [15], Lipsky et al. {16], Chung and Davis [17]. In their analysis the doubly
excited states are treated as quasi-bound resonances embedded in scattering
continuum. The other approach is based on treating the levels from bound state
point of view. To this end accurate calculations using complex rotation method by
Ho and co-workers [18], hyperspherical co-ordinate approach by Lin [19] and
others [20-24] and several other approaches [25, 26] are important, especially the
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molecular orbital (MO) approach by Faegin and Briggs [27] to find these resonant
states. The method was reviewed by Rost and Briggs [28] recently which gives
a clear picture of the origin of the quantum numbers described by Herrick et al. [4].
The distinguishing characteristics like excitation and decay of doubly excited states
of atoms and ions have been discussed thoroughly by Rau [29].

Experimental methods use photo-absorption techniques [9], electron and ion
impact observation [ 30] and the more recent beam-foil techniques [31] and ejected
electron spectra [32, 33]. Good reviews are now available on such calculations
[34].

In the present communication time-dependent perturbation theory has been
applied to calculate the doubly excited states Nsus: >S°, Npnp: *D® and Ndnd: 3G*®
(N=2,3,4, n=N +1, ...,5) for the helium isoelectronic ions up to B**. The
method which we adopted is based on bound state approach. The method was
discussed carlier in detail by Mukherjee and co-workers [35-37] and applied for
studying the doubly excited triplet transitions Nsnp: *P°, Nsnd: *D° and Npnd: 3F°
from 'S¢ ground state of helium isoelectronic sequence [38]. We seck the natural
excitation modes of the two electron charge cloud using a correlated description of
the electron pair. A suitable form of two-particle harmonic perturbation is chosen
which induces simultaneous excitations of the electrons to different spatially
excited states accompanied by a change in the spin state. In Sect. 2 we give a brief
description of the method. Section 3 will deal with a discussion of the present
results.

2 Method

Let us consider the time evolution of a two electron system, initially at the ground
state ¥ with energy E, of the usual non-relativistic Hamiltonian H,, subject to
a spin-dependent harmonic perturbation of the form

H'(r,6,1t) = G(r, 6)e " + G (r, 6)e'™". (1)

The perturbation G(r, 6) is such that it excites both the electrons simultaneously to
a new state changing the spin multiplicity from singlet to triplet. A suitable choice
of the perturbation may be

G(r,6) = ALh(r)h (r2) — hr)h'(r)] [S-(1)S4(2) = S (2)S+ (D], 2

where 1 is the perturbation strength parameter, S, and S_ are the usual spin up
and spin down operators. The spatial term excites the electrons from the ground
state. The general structure of the one particle term is given by

h(r) = ' P,(cos H), (3)

1=0,1,2, ..., will excite the ground s orbital to s, p, d, ... ,symmetries respectively.
Following [38] we can write the time evolution of the total wave function as
D) = N[V + 0¥ e ' 4 SP* el e ', 4)

where 0¥ * are the first order admixtures to ¥ due to two harmonic components of
the perturbation. Here the spin part of ¥ and ¥ are different. N is a normalization
constant to be determined from the condition [38]

1 T
- fo (BB di = 1. 5)
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Since the perturbing Hamiltonian equation (2) changes the spin multiplicity, the
spin part of the ¥ and §¥ * are different. To determine the time evolution of the
total wave function we have to determine the first order perturbed functions §¥ *.
These are obtained by constructing a time averaged functional

| (T 8
J(q>)=-fj0 COIHy+ H' —i— | @ dr ©)

subject to the optimization condition
3J(P) =0, (7)
with respect to parameters introduced in the functions 6% *. We expand the spatial
part of 0¥ * in the following manner:
¥ =) Citndl,2), (8)

where 7,(1, 2) are correlated pair bases formed out of one part1cle Slater type
orbitals (STOs) [38]

(1L 2) ~ L) &) — &L &) ©

and C;* are the linear variation parameters. Choice of exponents of the Slater bases
depends on the symmetry and principal quantum number of the excited orbitals
and are preassigned here. We expand the functional [Eq. (6)] in terms of 6% * and
retain terms up to quadratic in 6% *. The optimization condition, namely

8J(®)
oct
leads to sets of decoupled linear equations in the unknown parameters C = [38]

which can readily be solved for a given external frequency to get the response
characteristics of the system. A discussion of the results is given in the next section.

—0, (10)

3 Results and discussions

Low and moderately high lying doubly excited triplet transitions viz 1s2:
1S¢ — Nsns: 3S%; Npnp: >°D° and Ndnd: 3°G%, N =2,3,4andn=N + 1, ..., 5 have
been studied for helium isoelectronic sequence up to B**. For He we used radially
correlated ground state wave function of Mukherji [39] computed with Weiss [40]
exponents. For Li*, Be?™ and B*” the ground state wave functions are obtained
from Mukherji [39] computed with Clementi [41] exponents. For all the perturbed
orbitals 7 parameter STO representation has been used. The choice of the set of
exponents of the perturbed orbitals depends on the principal quantum number and
the symmetry of the orbital. In the present triplet state calculation although the
angular momentum of the orbitals are the same, the inner and outer principal
quantum numbers are different. Accordingly we have chosen different basis sets for
the inner and outer orbital representations. We do not mix basis sets of different
symmetries and thus take care of radial correlation only. The parameters of the
product basis set are determined, through optimization procedure at each external
frequency and provide very reasonable description of the perturbed functions at the
given frequency. The optimized functional J() rises monotonically with respect to
the driving frequency w with occasional real poles. The pole positions determine
doubly excited modes of the unperturbed Hamiltonian and hence positions of these
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poles represent the doubly excited energy levels measured from the ground state
energy of the systems. The first order perturbed function 6%~ blows up at pole
positions and renormalization of the first order perturbed function at the poles
furnishes adequate description of the doubly excited wave functions [38].

In Table 1 the calculated TDVPT 3S¢ double excitation energies are displayed
along with the values of the Coulomb repulsion integral in the excited state for He,
Li*, Be*" and B**. The level description was done according to the configuration
scheme of Cooper et al. [8]. Such results for the triplet excitations to *D® and 3G®
states for all the ions have been listed in Tables 2 and 3, respectively. In all cases
transition energy was measured from the ground state !S°. We have chosen the
angular part of the two particle perturbation operator in such a way that Npnp:
3De and Ndnd: *G*® final states are allowed. The quantum numbers N, K, T, n and
A of the doubly excited states as prescribed by the group theoretical analysis of
Waulfman [3], Herrick and Sinanoglu [4] and Lin [7, 19] are also listed in the
respective tables to have correspondence with the configuration state description.
In the group theoretical analysis effect of radial and angular correlations have been
taken care of, whereas our method incorporates radial correlations only. The effect
of radial and angular correlations on the doubly excited states was thoroughly
discussed by Lin [7] and Ezra and Berry [42] using hyperspherical co-ordinate
method.

Most of the theoretical data available on transition energy were compiled by
Shearer-Izumi [43]. In this regard Lipski et al. [16] have done important and
exhaustive calculations using configuration interaction (CI). We compared our
data with those compiled by Shearer-Izumi [43], Lipski et al. [16] and with the
accurate results using complex rotation method by Ho and co-workers [18].
Experimental data are available only for very few of the triplet transitions *D¢ [44,
457 and we have accordingly listed them in Table 2. Theoretical data existing for
the 3G* states are rather scanty. Available data are listed in Table 3. Most of the
theoretical calculations use highly correlated basis sets for both the ground as well
as excited states, hence the data are very accurate. As discussed in [38], the
discrepancy of our results arises from two sources. Firstly the reference point,
namely the ground state energy from where the excitation energy is measured is
taken from the radially correlated calculation of Mukherji [39] (results with
superscript o in the tables). These give a little underestimate of the transition
energies. In order to rectify this error we have also chosen the reference point as
that given by Pekeris [46]. Results with superscript § in the tables are with these
reference ground state energies. The second source of errors comes from the neglect
of angular correlation in the excited states. From a close look at the calculated and
existing accurate data listed in Tables 1-3 we find that the maximum deviation
which occurs for He is about 0.7% and the deviation diminishes as we go towards
transitions of higher inner or outer quantum numbers or transitions of higher
isoelectronic members. This is quite reasonable since the effect of interelectronic
correlation is relatively less for such transitions. The overall agreement of the
computed data with the existing ones clearly indicates that the effect of angular
correlations in the excited states is confined to within 1% for all the systems under
study. Along with the transition energies we get analytic wave functions for the
doubly excited states in terms of Slater bases. These analytic wave functions
contain lesser number of parameters than those from traditional variational
calculations. These wave functions may be useful for calculating other properties
like the autoionisation rates, transition probabilities etc. In the present case we
have calculated the expectation value of the Coulomb repulsion term in the doubly
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excited state. The very regular behavior of the expectation values as reflected from
the tables, show the consistency of the excited state wave functions. These wave
functions may be effectively used for collision calculations involving doubly excited
states, many of whom, are important in the solar chromosphere.

As an extra check for the doubly excited energy levels we estimated the effective
quantum numbers n* of such states using the formula [16]

o (5 (5] %

where ¢ is the energy of the doubly excited state (in a.u) measured from the
ionisation threshold, N is the principal quantum number of the inner electron and
Z is the nuclear charge. The calculated n* values have been compared with those
obtained by Lipsky et al. [16] in Tables 1, 2 for *S¢ and D¢ states, while in Table
3 for the few *G*® states these are compared using the existing data of Callaway [14]
and Ho [18]. The percentage deviation is maximum for the lowest transition in He
and it diminishes as we move towards higher lying excitations. This feature is
reflected for all the ions. The deviation also diminishes as we move along higher
members of the isoelectronic sequence. The effective quantum number n* depends
sensitively on the energy levels. The relatively large difference of our n* values from
those obtained from experimental data is not due to the present methodology but is
coming from the choice of our radially correlated basis sets. Results are expected to
be more accurate using basis sets which include radial as well as angular correla-
tions. In the present scheme we calculated the transitions only up to N =4 and
n = 5 levels. As for higher lying transitions, particularly for *G*® states practically
no data is available for comparison. Angular correlation may be incorporated in
these calculations by suitably extending the product basis sets. This is under
present consideration and results will be reported in due course.
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